久久久久国产一区二区_国产xxxx视频在线观看_国产99视频精品免视看9_四虎影视永久地址www成人_92国产精品午夜福利

Your Position: Home > News > Industry News

Single Transformer Proteins May Play a Role in Cancer

2012/8/1??????view:

  A new study led by scientists at The Scripps Research Institute (TSRI) and St. Jude Children's Research Hospital shows how a protein involved in cancer twists and morphs into different structures. The research focuses on a protein named nucleophosmin (NPM1). The protein has many functions and may interfere with cells' normal tumor suppressing ability when mutated. NPM1 has been implicated in cancers such as non-Hodgkin lymphoma and acute myelogenous leukemia.


    "We're studying basic biophysics, but we believe the complexity and rules we uncover for the physics of protein disorder and folding could one day also be used for better designs of therapeutics," said Ashok Deniz, Ph.D., associate professor at TSRI.


    The study (“Asymmetric Modulation of Protein Order-Disorder Transitions by Phosphorylation and Partner Binding”), published in Angewandte Chemie, focuses  on the nucleophosmin (NPM1) protein, which has many functions and, when mutated, has been shown to interfere with cells' normal tumor suppressing ability. NPM1 has been implicated in cancers such as non-Hodgkin lymphoma and acute myelogenous leukemia.


    Previous research led by study collaborators Richard Kriwacki, Ph.D., and Diana Mitrea, Ph.D., at St. Jude had demonstrated that a section of NPM1, called the N-terminal domain (Npm-N), doesn't have a defined, folded structure. Instead, the protein morphs between two forms: a one-subunit disordered monomer and a five-subunit folded pentamer.


    Until now, the mechanism behind this transformation was unknown, but scientists believed this monomer-pentamer equilibrium could be important for the protein's location and functioning in the cell. To shed light on how this transformation occurred, Dr. Deniz and his colleagues used a combination of three techniques—single-molecule biophysics, fluorescence resonance energy transfer (FRET), and circular dichroism, which enabled them to study individual molecules and collections of molecules. Single-molecule methods are especially useful for such studies because they can uncover important information that remains hidden in conventional studies.


    The researchers found that the transformation can proceed through more than one pathway. In one pathway, the transformation begins when the cell sends signals to attach phosphoryl groups to NPM1. Such phosphorylation prompts the ordered pentamer to become disordered and likely causes NPM1 to shuttle outside the cell's nucleus. A meeting with a binding partner can mediate the reverse transformation to a pentamer.


    When NPM1 does become a pentamer again under these conditions, which likely causes it to move back to the nucleolus, it takes a different path instead of just retracing its earlier steps.


    Priya Banerjee, Ph.D., an American Heart Association-supported postdoctoral research associate at TSRI and the first author of the study, compared these complicated transitions to the morphing of a "Transformers" toy, where a robot can become a car and then a jet. "Phosphorylation and partner-binding are like different cellular switches driving these changes," said Dr. Banerjee.


    According to Dr. Banerjee, the new study also reveals many intermediate states between monomer and pentamer structures and that these states can be manipulated or "tuned" by changing conditions such as salt levels, phosphorylation, and partner binding, which may explain how cells regulate the protein's multiple functions. The researchers said future studies could shed more light on the biological functions of these different structures and how they might be used in future cancer therapies.


    The team added that combining the three techniques used in this study, plus a novel protein-labeling technique for single-molecule fluorescence, could be a useful strategy for studying other unstructured, "intrinsically disordered proteins" (IDPs), which are involved in a host of cellular functions, as well as neurodegenerative disease, heart disease, infectious disease, type 2 diabetes and other conditions.  

主站蜘蛛池模板: 人妻少妇看a偷人无码精品| 青草影院内射中出高潮| 亚洲三区在线观看内射后入| 麻豆国产人妻欲求不满谁演的| 亚洲精品成人区在线观看| 久久精品国产9久久综合| 久久综合伊人77777麻豆| 熟女少妇内射日韩亚洲| 天天爽亚洲中文字幕| 少妇精品导航| 欧美熟妇丰满肥白大屁股免费视频 | 欧美群妇大交群| 人人妻人人澡人人爽精品欧美| 一本大道久久东京热无码av| 欧美一区二区三区久久综| 好好日网站| 成人免费a级毛片| 欧美内射rape视频| 亚洲av无码国产在丝袜线观看| 18禁免费观看网站| 国产∨亚洲v天堂无码久久久| 高潮迭起av乳颜射后入| 亚洲人成在线影院| 搡老熟女老女人一区二区| 国产呻吟久久久久久久92| 国产精品白丝av嫩草影院| 色偷偷人人澡人人爽人人模| 婷婷国产成人精品视频| 久久久久久亚洲av无码专区| 午夜精品久久久久久久爽| 狠狠躁夜夜人人爽天96| 无码人妻丰满熟妇a片护士| 天堂中文最新版在线中文| 国内自拍视频一区二区三区| 欧美日韩精品久久免费| 欧美最猛黑人xxxxx猛交| 最近在线更新8中文字幕免费| 成人欧美一区二区三区在线观看| 国产乱子伦一区二区三区| 无码人妻啪啪一区二区| 久久久久人妻一区精品色欧美|